Higher-order numerical methods for stochastic simulation of chemical reaction systems

نویسندگان

  • Tamás Székely
  • Kevin Burrage
  • Radek Erban
  • Konstantinos C. Zygalakis
  • Tamás Székely
چکیده

In this paper, using the framework of extrapolation, we present an approach for obtaining higher-order τ-leap methods for the Monte Carlo simulation of stochastic chemical kinetics. Specifically, Richardson extrapolation is applied to the expectations of functionals obtained by a fixed-step τ-leap algorithm. We prove that this procedure gives rise to second-order approximations for the first two moments obtained by the chemical master equation for zeroth-and first-order chemical systems. Numerical simulations verify that this is also the case for higher-order chemical systems of biological importance. This approach, as in the case of ordinary and stochastic differential equations, can be repeated to obtain even higher-order approximations. We illustrate the results of a second extrapolation on two systems. The biggest barrier for observing higher-order convergence is the Monte Carlo error; we discuss different strategies for reducing it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit Simulation Methods for Stochastic Chemical Kinetics

In biochemical systems some of the chemical species are present with only small numbers of molecules. In this situation discrete and stochastic simulation approaches are more relevant than continuous and deterministic ones. The fundamental Gillespie’s stochastic simulation algorithm (SSA) accounts for every reaction event, which occurs with a probability determined by the configuration of the s...

متن کامل

Numerical simulation of well stirred biochemical reaction networks governed by the master equation

Numerical simulation of stochastic biochemical reaction networks has received much attention in the growing field of computational systems biology. Systems are frequently modeled as a continuous–time discrete space Markov chain, and the governing equation for the probability density of the system is the (chemical) master equation. The direct numerical solution of this equation suffers from an e...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

P-stability‎, ‎TF and VSDPL technique in Obrechkoff methods for the numerical solution of the Schrodinger equation

Many simulation algorithms (chemical reaction systems, differential systems arising from the modeling of transient behavior in the process industries and etc.) contain the numerical solution of systems of differential equations. For the efficient solution of the above mentioned problems, linear multistep methods or Runge-Kutta technique are used. For the simulation of chemical procedures the ra...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011